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2.  SOAPdenovo  
3.  Celera Assembler 

3.  Whole Genome Alignment with MUMmer 



Shredded Book Reconstruction 

•  Dickens accidentally shreds the first printing of A Tale of Two Cities 
–  Text printed on 5 long spools 

•  How can he reconstruct the text? 
–  5 copies x 138, 656 words / 5 words per fragment = 138k fragments 
–  The short fragments from every copy are mixed together 
–  Some fragments are identical 

It was the best of of times, it was the times, it was the worst age of wisdom, it was the age of foolishness, … 

It was the best worst of times, it was of times, it was the the age of wisdom, it was the age of foolishness, 

It was the the worst of times, it  best of times, it was was the age of wisdom, it was the age of foolishness, … 

It was was the worst of times, the best of times, it it was the age of wisdom, it was the age of foolishness, … 

It it was the worst of was the best of times, times, it was the age of wisdom, it was the age of foolishness, … 

It was the best of times, it was the worst of times, it was the age of wisdom, it was the age of foolishness, … 

It was the best of times, it was the worst of times, it was the age of wisdom, it was the age of foolishness, … 

It was the best of times, it was the worst of times, it was the age of wisdom, it was the age of foolishness, … 

It was the best of times, it was the worst of times, it was the age of wisdom, it was the age of foolishness, … 

It was the best of times, it was the worst of times, it was the age of wisdom, it was the age of foolishness, … 

It was the best of of times, it was the times, it was the worst age of wisdom, it was the age of foolishness, … 

It was the best worst of times, it was of times, it was the the age of wisdom, it was the age of foolishness, 

It was the the worst of times, it  best of times, it was was the age of wisdom, it was the age of foolishness, … 

It was was the worst of times, the best of times, it it was the age of wisdom, it was the age of foolishness, … 

It it was the worst of was the best of times, times, it was the age of wisdom, it was the age of foolishness, … 



Greedy Reconstruction 
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 The repeated sequence make the correct 
reconstruction ambiguous 
•  It was the best of times, it was the [worst/age] 

 
Model the assembly problem as a graph problem 



de Bruijn Graph Construction 

•  Dk = (V,E) 
•  V = All length-k subfragments (k < l) 
•  E = Directed edges between consecutive subfragments 

•  Nodes overlap by k-1 words 

•  Locally constructed graph reveals the global sequence structure 
•  Overlaps between sequences implicitly computed 

It was the best  was the best of It was the best of  

Original Fragment Directed Edge 

de Bruijn, 1946 
Idury and Waterman, 1995 
Pevzner, Tang, Waterman, 2001 



de Bruijn Graph Assembly 

the age of foolishness 

It was the best  

best of times, it 
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After graph construction, 
try to simplify the graph as 

much as possible 



de Bruijn Graph Assembly 

the age of foolishness 

It was the best of times, it 

 of times, it was the 

it was the worst of times, it 

it was the age of 
the age of wisdom, it was the After graph construction, 

try to simplify the graph as 
much as possible 



Assembly Applications 
•  Novel genomes 

 

•  Metagenomes 

•  Sequencing assays 
– Structural variations 
– Transcript assembly 
– … 

Like Dickens, we must computationally reconstruct a genome from short fragments 



Assembling a Genome 

2. Construct assembly graph from overlapping reads 

…AGCCTAGACCTACAGGATGCGCGACACGT 

              GGATGCGCGACACGTCGCATATCCGGT… 

3. Simplify assembly graph 

 1. Shear & Sequence DNA 

4. Detangle graph with long reads, mates, and other links 



Illumina Sequencing by Synthesis 

Metzker (2010) Nature Reviews Genetics 11:31-46 
http://www.illumina.com/documents/products/techspotlights/techspotlight_sequencing.pdf 

1. Prepare 

2. Attach 

3. Amplify 

4. Image 

5. Basecall 



Paired-end and Mate-pairs 
Paired-end sequencing 
•  Read one end of the molecule, flip, and read the other end 
•  Generate pair of reads separated by up to 500bp with inward orientation 

Mate-pair sequencing 
•  Circularize long molecules (1-10kbp), shear into fragments, & sequence 
•  Mate failures create short paired-end reads 

10kbp 

10kbp 
circle 

300bp 

2x100 @ ~10kbp (outies) 

2x100 @ 300bp (innies) 



Typical contig coverage 
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Genome Coverage Distribution 

This is the mathematically model => reality may be much worse 
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Coverage and Read Length 
Idealized Lander-Waterman model 
•  Reads start at perfectly random 

positions 

•  Poisson distribution in coverage 
–  Contigs end when there are no 

overlapping reads 

•  Contig length is a function of 
coverage and read length 
–  Effective coverage reduced by o/l 
–  Short reads require much higher 

coverage to reach same expected 
contig length 

Lander Waterman Expected Contig Length vs Coverage
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Assembly of Large Genomes using Second Generation Sequencing 
Schatz MC, Delcher AL, Salzberg SL (2010) Genome Research. 20:1165-1173.  



Two Paradigms for Assembly 

Short read assemblers 
•  Repeats depends on word length 
•  Read coherency, placements lost 
•  Robust to high coverage 

Assembly of Large Genomes using Second Generation Sequencing 
Schatz MC, Delcher AL, Salzberg SL (2010) Genome Research. 20:1165-1173.  
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Long read assemblers 
•  Repeats depends on read length 
•  Read coherency, placements kept 
•  Tangled by high coverage 
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Simplifications and Corrections 

Path Compression 

it was the worst 

worst of times, it 

was the worst of 

the worst of times, 

Clip Tips Pop Bubbles 

it was the worst of  

was the worst of times, 

the worst of times, it  

was the worst of 

worst of times, it 

the worst of times, 

the worst of tymes, 

was the worst of times, 
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was the worst of times, 

was the worst of tymes, 

times, it was the age 
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was the worst of it was the age 

times, 

tymes, 



Initial Contigs 
•  After simplification and correction, compress graph 

down to its non-branching initial contigs 
–  Aka “unitigs”, “unipaths”  



Repeats and Read Length 

•  Explore the relationship between read length and contig N50 size 
–  Idealized assembly of read lengths: 25, 35, 50, 100, 250, 500, 1000 
–  Contig/Read length relationship depends on specific repeat composition 
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Bacillus anthracis       
5.22Mbp 

Colwellia psychrerythraea 
5.37Mbp 

Escherichia coli K12 
4.64Mbp 

Salmonella typhi      
4.80Mbp 

Yersinia pestis         
4.70Mbp 

Assembly Complexity of Prokaryotic Genomes using Short Reads. 
Kingsford C, Schatz MC, Pop M (2010) BMC Bioinformatics. 11:21. 



Repetitive regions 
•  Over 50% of the human genome is repetitive 
 

19 

Repeat Type Definition / Example Prevalence 

Low-complexity DNA / Microsatellites (b1b2…bk)N where 1 < k < 6 
CACACACACACACACACACA 

2% 

SINEs (Short Interspersed Nuclear 
Elements) 

Alu sequence (~280 bp) 
Mariner elements (~80 bp) 

13% 

LINEs (Long Interspersed Nuclear 
Elements) 

~500 – 5,000 bp 21% 

LTR (long terminal repeat) 
retrotransposons 

Ty1-copia, Ty3-gypsy, Pao-BEL 
(~100 – 5,000 bp) 

8% 

Other DNA transposons 3% 

Gene families & segmental duplications 4% 



Repeats and Coverage Statistics A-stat 

•! If n reads are a uniform random sample of the genome of length G, 
we expect k=n!/G reads to start in a region of length!. 

–! If we see many more reads than k (if the arrival rate is > A) , it is likely to be 
a collapsed repeat   

–! Requires an accurate genome size estimate 
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Scaffolding 
•  Initial contigs (aka unipaths, unitigs) terminate at 

–  Coverage gaps: especially extreme GC regions 
–  Conflicts: sequencing errors, repeat boundaries 

•  Iteratively resolve longest, ‘most unique’ contigs 
–  Both overlap graph and de Bruijn assemblers initially collapse 

repeats into single copies 
–  Uniqueness measured by a statistical test on coverage 



N50 size 
Def: 50% of the genome is in contigs larger than N50 

Example:  1 Mbp genome 
 
 
 
 
 

 N50 size = 30 kbp  
  (300k+100k+45k+45k+30k = 520k >= 500kbp) 

 
Note: 

N50 values are only meaningful to compare when base genome 
size is the same in all cases 

1000 

300 45 30 100 20 15 15 10 . . . . . 45 

50% 



Assembly Algorithms 

ALLPATHS-LG SOAPdenovo Celera Assembler 

Broad’s assembler 
(Gnerre et al. 2011) 

 
De bruijn graph 

Short + PacBio (patching) 
 

Easy to run if you have 
compatible libraries 

  
http://www.broadinstitute.org/

software/allpaths-lg/blog/ 

BGI’s assembler 
(Li et al. 2010) 

 
De bruijn graph 

Short reads 
 

Most flexible, but requires a 
lot of tuning 

 
http://soap.genomics.org.cn/

soapdenovo.html 

JCVI’s assembler 
(Miller et al. 2008) 

 
Overlap graph 

Medium + Long reads 
 

Supports Illumina/454/PacBio 
Hybrid assemblies 

 
http://wgs-assembler.sf.net 



Genome assembly with ALLPATHS-LG 
 Iain MacCallum 



How ALLPATHS-LG works 

assembly 

reads 

unipaths 

corrected reads 

doubled reads 

localized data 

local graph assemblies 

global graph assembly 



ALLPATHS-LG sequencing model 

*See next slide. 
 
**For best results.  Normally not used for small genomes.   
   However essential to assemble long repeats or duplications. 
 
Cutting coverage in half still works, with some reduction in 
quality of results.   
 
All: protocols are either available, or in progress. 



Error correction 

Given a crystal ball, we could stack reads on the chromosomes they came from 
(with homologous chromosomes separate), then let each column ‘vote’: 

A 

C 
C 
C 

C 
C 
C 
C 
C 

chromosome 

change to C  

But we don’t have a crystal ball.... 



Error correction 

ALLPATHS-LG. For every K-mer, examine the stack of all reads containing the 
K-mer. Individual reads may be edited if they differ from the overwhelming 
consensus of the stack. If a given base on a read receives conflicting votes 
(arising from membership of the read in multiple stacks), it is not changed. 
(K=24) 
 

ß   K   à 

T 
T 
T 
T 
T 
T 
T 
T 
T 

columns inside the kmer are homogeneous 

A 

C 
C 
C 

C 
C 
C 
C 
C 

columns outside the kmer may be mixed 

Two calls at Q20 or better are enough to protect a base 

change to C  



Read doubling 

+ 
28 28 

More than one closure allowed (but rare). 

To close a read pair (red), we require the existence of another read pair (blue), 
overlapping perfectly like this:  



Unipath: unbranched part of genome – squeeze together 
perfect repeats of size ≥ K 

Unipaths 

R A B 

R C D 
parts of 
genome 

R 
A B 

C D 
unipaths from 
these parts 

R 
A B 

C D 
unipath graph 

Adjacent unipaths overlap by K-1 bases 



Localization 

reaches to other unipaths (CN = 1)  
directly and indirectly   

read pairs reach into repeats 

and are extended by other 
unipaths       

I. Find ‘seed’ unipaths, evenly spaced across genome 
(ideally long, of copy number CN = 1) 

seed unipath 
 

II. Form neighborhood around each seed 



Create assembly from global assembly graph 

A 

T 

G 

GG 

{A,T} G 

flatten 

{A,T} G 

scaffold 

{A,T} G 

patch 

fix 
{A,T} {G,GG} 



Large genome recipe: ALLPATHS-LG vs capillary 

Completeness 

genome 
(%) 

88.7 
94.2 

exome 
(%) 

96.7 97.3 

seg dups 
(%) 

42.3 

65.7 

Accuracy 

bases 
between 

base errors 

bases between 
local 

misassemblies 

8,300 

2,000 

4,500 
3,700 

Continuity 

contig 
N50 
(kb) 

17 
25 

scaffold 
N50 (Mb) 

17.5 16.9 

Cost 

$ 

Mouse Genome 



19+ vertebrates 
assembled with 
ALLPATHS-LG 

scaffold N50 (Mb) 

co
nt

ig
 N

50
 (k

b)
 

B6 

129 

bushbaby 

tenrec 

ground squirrel 

N. brichardi 

NA12878 

coelacanth 

stickleback 

shrew 

A. burtoni 

P. nyererei 

M. zebra 

female ferret 

tilapia 

spotted gar 
    69 kk 

male ferret 
     67 kb 

squirrel monkey 
            19 Mb 

chinchilla 



Genome assembly with SOAPdenovo 
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True k-
mers 

Error k-
mers 

1. Count all “Q-mers” in reads 
•  Fit coverage distribution to mixture model 

of errors and regular coverage 
•  Automatically determines threshold for 

trusted k-mers 

2. Correction Algorithm 
•  Considers editing erroneous kmers into 

trusted kmers in decreasing likelihood 
•  Includes quality values, nucleotide/nucleotide 

substitution rate 

Error Correction with Quake 

Quake: quality-aware detection and correction of sequencing reads. 
Kelley, DR, Schatz, MC, Salzberg SL (2010) Genome Biology. 11:R116  



Illumina Sequencing & Assembly 
2x76bp @ 275bp 

2x36bp @ 3400bp  

Validated 51,243,281 88.5% 

Corrected 2,763,380 4.8% 

Trim Only 3,273,428 5.6% 

Removed 606,251 1.0% 

k−mer counts

Coverage

Fr
eq
ue
nc
y

0 100 200 300 400

0
20

40
60

80
10
0

# ≥ 100bp N50 (bp) 

Scaffolds 2,340 253,186 

Contigs 2,782 56,374 

Unitigs 4,151 20,772 

Quake Results SOAPdenovo Results 



Genome assembly with the  
Celera Assembler 



Celera Assembler 

1.  Pre-overlap 
–  Consistency checks 
 

2.  Trimming 
–  Quality trimming & partial overlaps 

3.  Compute Overlaps 
–  Find high quality overlaps 

4.  Error Correction 
–  Evaluate difference in context of 

overlapping reads 

5.  Unitigging 
–  Merge consistent reads 

6.  Scaffolding 
–  Bundle mates, Order & Orient 

7.  Finalize Data 
–  Build final consensus sequences 

 

http://wgs-assembler.sf.net 



1.  Trim/correct SR sequence 
2.  Compute an SR layout for each LR 

1.  Map SRs to LRs 
2.  Trim LRs at coverage gaps 
3.  Compute consensus for each LR 

3.  Co-assemble corrected LRs and SRs 
–  Celera Assembler enhanced to support 32 Kbp reads 

SMRT-hybrid Error Correction & Assembly 

Hybrid error correction and de novo assembly of single-molecule sequencing 
reads. Koren, S, Schatz, MC, Walenz, BP, Martin, J, Howard, J, Ganapathy, G, Wang, Z, Rasko, 
DA, McCombie, WR, Jarvis, ED, Phillippy, AM. (2011) In preparation. 



Error Correction Results 

Correction results of 20x PacBio coverage of E. coli K12 corrected using 50x Illumina 



Hybrid Assembly Results 

SMRT-hybrid assembly results of 50x PacBio corrected coverage of E. coli K12 
Long reads lead to contigs over 1Mbp 



•  Attempt to answer the question: 
  “What makes a good assembly?” 

•  Organizers provided simulated sequence data 
–  Simulated 100 base pair Illumina reads from simulated 

diploid organism 

•  41 submissions from 17 groups 

•  Results demonstrate trade-offs assemblers must make 



Assembly Results 



Final Rankings 

•  SOAPdenovo and ALLPATHS came out neck-and-neck followed closely behind by 
SGA, Celera Assembler, ABySS 

•  My recommendation for “typical” short read assembly is to use ALLPATHS 



Assembly Summary 
Assembly quality depends on  
1.  Coverage: low coverage is mathematically hopeless 
2.  Repeat composition: high repeat content is challenging 
3.  Read length: longer reads help resolve repeats 
4.  Error rate: errors reduce coverage, obscure true overlaps 

•  Assembly is a hierarchical, starting from individual reads, build high 
confidence contigs/unitigs, incorporate the mates to build scaffolds  
–  Extensive error correction is the key to getting the best assembly possible 

from a given data set 

•  Watch out for collapsed repeats & other misassemblies 
–  Globally/Locally reassemble data from scratch with better parameters & 

stitch the 2 assemblies together 



Break 



Whole Genome Alignment 
with MUMmer 

 

Slides Courtesy of Adam M. Phillippy 
amp@umics.umd.edu 

 



Goal of WGA 
•  For two genomes, A and B, find a mapping from 

each position in A to its corresponding 
position in B 

CCGGTAGGCTATTAAACGGGGTGAGGAGCGTTGGCATAGCA 

CCGGTAGGCTATTAAACGGGGTGAGGAGCGTTGGCATAGCA 

41 bp genome 



Not so fast... 
•  Genome A may have insertions, deletions, 

translocations, inversions, duplications or SNPs 
with respect to B (sometimes all of the above) 

CCGGTAGGATATTAAACGGGGTGAGGAGCGTTGGCATAGCA 

CCGCTAGGCTATTAAAACCCCGGAGGAG....GGCTGAGCA 



WGA visualization 
•  How can we visualize whole genome alignments? 

•  With an alignment dot plot 
–  N x M matrix 

•  Let i = position in genome A 
•  Let j = position in genome B 
•  Fill cell (i,j) if Ai shows similarity to Bj 

–  A perfect alignment between A and B would completely fill 
the positive diagonal 

T 

G 

C 

A 

A C C T 



B 

A 

B 

A 

Translocation Inversion Insertion 



SV Types 

•  Different structural 
variation types / 
misassemblies will be 
apparent by their 
pattern of breakpoints 

•  Most breakpoints will 
be at or near repeats 

•  Things quickly get 
complicated in real 
genomes 

http://mummer.sf.net/manual/ 
AlignmentTypes.pdf 



MUMmer 
•  Maximal Unique Matcher (MUM) 

–  match 
•  exact match of a minimum length 

–  maximal 
•  cannot be extended in either direction without a mismatch 

–  unique 
•  occurs only once in both sequences (MUM) 
•  occurs only once in a single sequence (MAM) 
•  occurs one or more times in either sequence (MEM) 



Fee Fi Fo Fum, 
is it a MAM, MEM or MUM? 

R 

Q 

MUM : maximal unique match 
MAM : maximal almost-unique match 
MEM : maximal exact match 



Seed and Extend 
 How can quickly find large MUMs? 
1.  Find MUMs 

w  using a suffix tree 

2.  Cluster MUMs 
w  using size, gap and distance parameters 

3.  Extend clusters 
w  using modified Smith-Waterman algorithm 



Seed and Extend  
visualization 

R 

Q 

FIND all MUMs 
CLUSTER consistent MUMs 
EXTEND alignments 



WGA example with nucmer 
•  Yersina pestis CO92 vs. Yersina pestis KIM 

–  High nucleotide similarity, 99.86% 
•  Two strains of the same species 

–  Extensive genome shuffling 
•  Global alignment will not work 

–  Highly repetitive 
•  Many local alignments 



WGA Alignment 

See manual at http://
mummer.sourceforge.net/manual 

 
nucmer –maxmatch CO92.fasta KIM.fasta 
-maxmatch  Find maximal exact matches (MEMs) 
 

delta-filter –m out.delta > out.filter.m 
-m  Many-to-many mapping 
 

show-coords -r out.delta.m > out.coords 
-r  Sort alignments by reference position 
 

dnadiff out.delta.m 
Construct catalog of sequence variations 
 

mummerplot --large --layout out.delta.m 
--large   Large plot 
--layout Nice layout for multi-fasta files 
--x11   Default, draw using x11 (--postscript, --png) 
*requires gnuplot 





References 
–  Documentation 

•  http://mummer.sourceforge.net 
»  publication listing 

•  http://mummer.sourceforge.net/manual 
»  documentation 

•  http://mummer.sourceforge.net/examples 
»  walkthroughs 

–  Email 
•  mummer-help@lists.sourceforge.net 
•  amp@umiacs.umd.edu 
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Suffix Tree for atgtgtgtc$ 

atgtgtgtc$ $ 
c$ gt t 

c$ c$ gt 
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gtc$ 

gt 

Drawing credit: Art Delcher 



MUMmer Clustering 

cluster length = Σmi 

gap distance = C 

indel factor = |B – A| / B   or   |B – A| 

R 

Q 

A 

B 

C 

m1 m2 m3 



MUMmer Extending 

R 

Q 

break length = A 

A 

B 

break point = B 

score ~70% 
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MUMmer Banded Alignment 


